Diversity and distribution of CO2-fixing microbial community along elevational gradients in grassland soils of the Tibetan Plateau

  • Zhou, JZ et al. Microbial mediation of carbon cycle feedbacks on global warming. Nat. Air conditioning To change 2, 106–110. https://doi.org/10.1038/nclimate1331 (2012).

  • Li, FL, Liu, M., Li, ZP, Jiang, CY, Han, FX & Che, YPChanges in soil microbial biomass and functional diversity with a nitrogen gradient in soil columns. Appl. Soil School. 64, 1–6. https://doi.org/10.1016/j.apsoil.2012.10.006 (2013).

  • Gryta, A., Frąc, M. & Oszust, K. The application of the Biolog EcoPlate approach in the ecotoxicological evaluation of dairy sewage sludge. Appl. Biochemistry. Biotechnol. 174, 1434–1443. https://doi.org/10.1007/s12010-014-1131-8 (2014).

  • Djukic, I., Zehetner, F., Mentler, A. & Gerzabek, MH Microbial community composition and activity in different areas of alpine vegetation. Boil the Biochem soil. 42, 155–161. https://doi.org/10.1016/j.soilbio.2009.10.006 (2010)

  • Bell, T., Newman, JA, Silverman, BW, Turner, SL, and Lilley, AK The contribution of species richness and composition to bacterial services. Nature. 436 (7054), 1157–1160. https://doi.org/10.1038/nature03891 (2015).

  • Zhang, X., Zhao, X. & Zhang, M. Changes in the functional diversity of microbial communities along a soil aquifer for recharge of reclaimed water. Microbiol FEMS. School. 80, 9–18. https://doi.org/10.1111/j.1574-6941.2011.01263.x (2012).

  • Hügler, M. & Sievert, SM Beyond the Calvin Cycle: Autotrophic Carbon Sequestration in the Ocean. Ann. Rev. Mar. Sci. 3, 261–289. https://doi.org/10.1146/annurev-marine-120709-142712 (2010)

  • Falkowski, P. et al. The global carbon cycle: a test of our knowledge of the earth as a system. Science 290, 291–296. https://doi.org/10.1126/science.290.5490.291 (2000).

  • Tabita, FR Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol. Round. 52, 155–189. https://doi.org/10.1128/mr.52.2.155-189.1988 (1988).

  • Yuan, H., Ge, T., Chen, C., O’Donnell, AG, and Wu, J. Important role of microbial autotrophy in soil carbon sequestration. Appl. About. Microbiol. 78, 2328–2336. https://doi.org/10.1128/AEM.06881-11 (2012).

  • Xu, HH & Tabita, FR Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms. Appl. About. Microbiol. 62, 1913-1921. https://doi.org/10.1128/aem.62.6.1913-1921.1996 (1996).

  • Brauer, SL et al. Black carbon fixation in estuarine turbidity maxima of the Columbia River: molecular characterization of the red type cbbL genes and measuring DIC uptake rates in response to the addition of electron donors. Coast of the Estuaries. 36(5), 1073-1083. https://doi.org/10.1007/s12237-013-9603-6 (2013).

  • Hanson, TE & Tabita, FR A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from chlorobium tepidum that is involved in sulfur metabolism and the response to oxidative stress. proc. Natl. Acad. Science. UNITED STATES 98, 4397–4402. https://doi.org/10.1073/pnas.081610398 (2001).

  • Selesi, D., Pattis, I., Schmid, M., Kandeler, Ellen. & Hartmann, A. Quantification of bacterial RubisCO genes in soils by cbbL Real-time targeted PCR. J. Microbiol. Meth. 69, 497–503. https://doi.org/10.1016/j.mimet.2007.03.002 (2007).

  • Shanmugam, SGet al. Patterns of bacterial diversity differ in soils growing in subtropical and cool temperate ecosystems. Microb. School. 73, 556–569. https://doi.org/10.1007/s00248-016-0884-8 (2017).

  • Guo, G., Kong, W., Liu, J., Zhao, J. & Du H. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils of the Tibetan Plateau. Appl. Microbiol. Biotechnol. 99, 8765–8776. https://doi.org/10.1093/femsec/fiw160 (2015).

  • Bryant, JA, Lamanna, C., Morlon, H., Kerkhoff, AJ, Enquist, BJ & Green, JL Mountainside Microbes: Contrasting Elevation Patterns of Bacterial and Plant Diversity. Proc Natl Acad Sci US A. 105, 11505–11511. https://doi.org/10.1073/pnas.0801920105 (2008)

  • Shen, C., Ni, Y., Liang, W. & Chu, H. Distinct bacterial soil communities along a small-scale uplift gradient in alpine tundra. Front. Microbiol. 6582. https://doi.org/10.3389/fmicb.2015.00582 (2015).

  • Lugo, MA, Ferrero, M., Menoyo, E., Estévez, MC, Sieriz, F. & Anton, A. Diversity of arbuscular mycorrhizal fungi and rhizospheric bacteria along an altitudinal gradient in South American prairies of puna. Microb. School. 55, 705–713. https://doi.org/10.1007/s00248-007-9313-3 (2008).

  • Singh, D., Takahashi, K., and Adams, JM Elevation patterns in archaeal diversity on Mount Fuji. Plos One. seven, e44494. https://doi.org/10.1371/journal.pone.0044494 (2012)

  • Miyamoto, Y., Nakano, T., Hattori, M. & Nara, K. The mid-range effect in ectomycorrhizal fungi: range overlap along an elevation gradient on Mount Fuji in Japan. ISME J. 8(8), 1739-1746. https://doi.org/10.1038/ismej.2014.34 (2014).

    PubMed Article PubMed Central Google Scholar

  • Singh, D., Lee-Cruz, L., Kim, WS, and Kerfahi D. Strong elevation trends in soil bacterial community composition on Mount Halla, South Korea. Floor. Boiling. Biochemistry. 68, 140–149. https://doi.org/10.1016/j.soilbio.2013.09.027 (2014).

  • Qiu, J. China: The Third Pole. Nature 454, 393–396. https://doi.org/10.1038/454393a (2008)

  • Singh, D., Takahashi, K., Kim, M., Chun, J. & Adams, JM A bumpy trend in bacterial diversity with elevation on Mount Fuji, Japan. Microb. School. 63, 429–437. https://doi.org/10.1007/s00248-011-9900-1 (2012).

  • Shen, C. et al. Soil pH determines the spatial distribution of bacterial communities along the elevation on Changbai Mountain. Boil the ground. Biochemistry. 57, 204–211. https://doi.org/10.1016/j.soilbio.2012.07.013 (2013).

  • Zhang, B., Chen, SY, Zhang, JF, and Tian, ​​C. Depth-related responses of soil microbial communities to experimental warming in an alpine grassland of the Qinghai-Tibet Plateau. EUR. J. Sol Sci. 66, 496–504. https://doi.org/10.1111/ejss.12240 (2015).

  • Liu, J.et al. High-throughput sequencing analysis of the biogeographical distribution of bacterial communities in black soils of northeast China. Boil the ground. Biochemistry. 70, 113–122. https://doi.org/10.1016/j.soilbio.2013.12.014 (2014)

  • Wu, XD, Xu, HY, Liu, GM, Ma, X., Mu, C. & Zhao L. Bacterial communities in upper soil layers in permafrost regions of the Qinghai-Tibetan Plateau. Appl. School. 120, 81–88. https://doi.org/10.1016/j.apsoil.2017.08.001 (2017).

  • Horner-Devine, MC, Lage, M., Hughes, JB & Bohannan, BJMA taxo-area relationship for bacteria. Nature 432, 750–753. https://doi.org/10.1038/nature03073 (2004).

  • Fuks, D. et al. Relations between heterotrophic bacteria and cyanobacteria in the northern Adriatic in relation to the phenomenon of mucilage. Science. About. 353, 178–188. https://doi.org/10.1016/j.scitotenv.2005.09.015 (2005).

  • Dziallas, C. & Grossart, HP Microbial interactions with the cyanobacterium Microcystis aeruginosa and their temperature dependence. Mar Biol. 159, 2389–2398. https://doi.org/10.1007/s00227-012-1927-4 (2012).

  • Shen, H., Niu, Y., Xie, P., Tao, M., and Yang, X. Morphological and physiological changes in Microcystis aeruginosa following interactions with heterotrophic bacteria. Freshw. Biol. 56, 1065-1080. https://doi.org/10.1111/j.1365-2427.2010.02551.x (2011).

  • Xun, L., Sun, ML, Zhang, HH, Xu, N., and Sun, GY Using mulberry-soybean intercropping in saline-alkaline soil impacts the diversity of the soil bacterial community. Microb. Biotechnol. 9, 293–304. https://doi.org/10.1111/1751-7915.12342 (2016).

  • Mohamed, H., Miloud, B., Zohra, F., García-Arenzana, JM & Rodríguez-Couto, S. Isolation and characterization of actinobacteria from Algerian Sahara soils with antimicrobial activities. Int. J.Mol. Cell med. 6, 109–120. https://doi.org/10.22088/acadpub.BUMS.6.2.5 (2017).

  • Wang, J.T. et al. Patterns of altitudinal distribution of bacterial and archean soil communities along Mount Shegyla on the Tibetan Plateau. Microb. School. 69, 135–145. https://doi.org/10.1007/s00248-014-0465-7 (2015).

  • Zhang, Y.G. et al. Patterns and drivers of soil bacterial diversity along an elevational gradient on Shennongjia Mountain, China. Microb. Biotechnol. 8, 739–746. https://doi.org/10.1111/1751-7915.12288 (2015).

  • Li, G., Xu, G., Shen, C., Yong, T., Zhang, Y., Ma, K. Contrasting altimetric diversity patterns for soil bacteria between two ecosystems divided by the tree line. Science. China Life Sci. 59, 1177-1186. https://doi.org/10.1007/s11427-016-0072-6 (2016).

  • Liu, L., Hart MM, Zhang, J., Cai, X. & Gai, J. Altitudinal distribution patterns of AM fungal assemblages in a Tibetan alpine grassland. Microbiol FEMS. School. 91, fiv078. https://doi.org/10.1093/femsec/fiv078 (2015).

  • Xiao, KQ et al. Quantitative analyzes of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large subunit genes (cb L) in typical paddy soils. Microbiol FEMS. School. 87, 89–101. https://doi.org/10.1111/1574-6941.12193 (2014).

  • Sardans, J., Peñuelas, J. & Estiarte, M. Changes in C and N cycle-related soil enzymes and soil C and N content under prolonged warming and drought in a Mediterranean scrub. Appl. School. 39, 223–235. https://doi.org/10.1016/j.apsoil.2007.12.011 (2008).

    Google Scholar article

  • Sidari, M., Ronzello, G., Vecchio, G. & Muscolo, A. Influence of slope aspects on chemical and biochemical properties of soil in a Pinus Iaricio forest ecosystem of Aspromonte (southern Italy). EUR. J. Sol Biol. 44, 364–372. https://doi.org/10.1016/j.ejsobi.2008.05.001(2008) (2008).

    CAS Google Scholar Article

  • La, D., Zhang, YJ, Pang, YZ, Cui, LL, Liu J. & Suo, NCNAnumerical analysis of plant community and species richness patterns along an altitudinal gradient in Mila Hill, Au Tibet. J. Tibet Univ. 12–20 (in Chinese) (2015).

  • Share.

    Comments are closed.